China Good quality North America CZPT Type Hydraulic Telescopic Cylinder for Tippping vacuum pump design

Product Description

Parker and CHINAMFG Type telescopic cylinder for dump truck and trailer body

1. Company Information
  Found 1995,w are 1 of the biggest hydraulic cylinder manufacturer in China, specialized in design, R & D and manufacturing of hydraulic machinery products etc, with its annual production capaciy of 2 square meters.There are 700 sets of mnufacturing equipment .

Product Description

  2. hydraulic telescopic cylinder for dump truck drawing and parameter 

 

Parker and Custom hoists kind 

ITEM  MODEL NO. Largest Moving Stage Diameter # of Stages STROKE CLOSED LENGTH OPEN LENGTH
1 WTPK 3TG F5*72 5″ 3 72″(1829mm) 37.19″ (945mm) 109.19″ (2773mm)
2 WTPK 3TG F5*84 5”       3 84″ (2134mm) 41.19″ (1046mm) 125.19″ (3180mm)
3 WTPK 3TG F5*107 5″ 3 107.56″ (2732mm) 48.38″ (1229mm) 155.94″ (3961mm)
4 WTPK 3TG F5*126 5″ 3 126.63″ (3216mm) 54.56″ (1386mm) 181.19″ (4602mm)
5 WTPK 3TG F6*86 6″ 3 86.75″ (2203mm) 40.88″ (1038mm) 127.63″ (3241mm)
6 WTPK 3TG F6*104 6″ 3 103.94″ (2640mm) 47″ (1194mm) 150.94″ (3834mm)
7 WTPK 3TG F6*107 6″ 3 107.56″ (2732mm) 48.38″ (1289mm) 155.94″ (3961mm)
8 WTPK 3TG F6*111 6”     3 111″ (2819mm) 49.94″ (1268mm) 160.94″ (4087mm)
9 WTPK 3TG F6*120 6”     3 120” (3048mm) 53.5″ (1359mm) 173.5″ (4407mm)
10 WTPK 3TG F6*123 6”     3 123″ (3124mm) 54.94″ (1395mm) 177.94″ (4519mm)
11 WTPK 3TG F6*126 6”     3 126.31″(3208mm) 54.56″ (1386mm) 180.87″ (4594mm)
12 WTPK 3TG F6*140 6”     3 140.25″ (3562mm) 59.81″ (1519mm) 200.06″ (5081mm)
13 WTPK 4TG F6*135 6”     4 135″ (3429mm) 47.19″ (1199mm) 182.19″ (4628mm)
14 WTPK 4TG F6*156 6”     4 156″ (3962mm) 53.62″ (1362mm) 209.62″ (5324mm)
15 WTPK 3TG F7*110 7″     3 110.63″ (2810mm) 50.06″ (1271mm) 160.69″ (4081mm)
16 WTPK 3TG F7*120 7″  3 120″ (3048mm) 53.12″ (1349mm) 173.12″ (4397mm)
17 WTPK 3TG F7*124 7″    3 124.88″ (3172mm) 54.81″ (1392mm) 179.69″ (4564mm)
18 WTPK 3TG F7*129 7″    3 129″ (3277mm) 56.5″  (1435mm) 185.5″ (4712mm)
19 WTPK 3TG F7*140 7″    3 140.44″ (3567mm) 60″  (1524mm) 200.44″ (5091mm)
20 WTPK 3TG F7*150 7″    3 150″ (3810mm) 63.50″  (1613mm) 213.50″ (5423mm)
21 WTPK 4TG F7*120 7″    4 120″ (3048mm) 44.12″ (1120mm) 164.12″ (4168mm)
22 WTPK 4TG F7*135 7″    4 135″ (3429mm) 48.43″ (1230mm) 183.44″ (4659mm)
23 WTPK 4TG F7*140 7″    4 140″ (3556mm) 49.75″ (1263mm) 189.75″ (4819mm)
24 WTPK 4TG F7*156 7″    4 156″ (3962mm) 53.75″ (1365mm) 209.75″ (5327mm)
25 WTPK 4TG F7*161 7″    4 161.75″ (4108mm) 55.31″ (1405) 217.06″ (5513mm)
26 WTPK 4TG F7*167 7″    4 167″ (4242mm) 56.38″ (1432mm) 223.38″ (5674mm)
27 WTPK 4TG F7*180 7″    4 180″ (4572mm) 61.12″ (1552mm) 241.12″ (6124mm)
28 WTPK 4TG F8*148 8″    4 147.75″ (3753mm) 51.50″ (1308mm) 199.25″ (5061mm)
29 WTPK 4TG F8*156 8″    4 156″ (3962mm) 53.75″ (1365mm) 209.75″ (5327mm)
30 WTPK 4TG F8*161 8″    4 160″ (4064mm) 55.75″ (1416mm) 215.75″ (5480mm)
31 WTPK 4TG F8*170 8″    4 170″ (4318mm) 57.25″ (1454mm) 227.25″ (5481mm)
32 WTPK 4TG F8*180 8″    4 180″ (4572mm) 59.75″ (1518mm) 239.75″ (6090mm)
33 WTPK 5TG F8*170 8″    5 170″ (4318mm) 49.88″ (1267mm) 219.88″ (5585mm)
34 WTPK 5TG F8*190 8″   5 189″ (4800mm) 54.62″ (1387mm) 243.62″ (6188mm)
35 WTPK 5TG F8*220 8″   5 220″ (5588mm) 60″ (1524mm) 280″ (7112mm)
36 WTPK 5TG F8*235 8″    5 234″ (5944mm) 64.62″ (1641mm) 298.62″ (7585mm)
37 WTPK 5TG F8*250 8″   5 249″ (6325mm) 68.62″ (1743mm) 317.62″ (8068mm)
38 WTPK 5TG F8*265 8″    5 265″ (6731mm) 71″ (1803mm) 336″ (8534mm)
39 WTPK 5TG F8*285 8″   5 285″ (7239mm) 78.5″ (1994mm) 363.5″ (9233mm)
40 WTPK 5TG F9*220 9″    5 218″ (5537mm) 62.44″ (1586mm) 280.44″ (7123mm)
41 WTPK 5TG F9*235 9″    5 233″ (5918mm) 65.44″ (1662mm) 298.44″ (7580mm)
42 WTPK 5TG F9*250 9″    5 248″ (6299mm) 68.44″ (1738mm) 316.44″ (8037mm)
43 WTPK 5TG F9*265 9″    5 265″ (6731mm) 72.62″ (1844mm) 337.62″ (8575mm)
44 WTPK 5TG F9*280 9″    5 280″ (7112mm) 72.62″ (1997mm) 358.62″ (9109mm)
45 WTPK 5TG F9*300 9″    5 300″ (7620mm) 79″ (2007mm) 379″ (9627mm)
46 WTPK 5TG F9*320 9″    5 320″ (8128mm) 83″ (2108mm) 403″ (9628mm)
47 WTPK 5TG F9*340 9″    5 340″ (8636mm) 87″ (2210mm) 427″ (10846mm)

 

  3. hydraulic telescopic cylinder for dump truck produce line

700 sets manufacturing equipment,such as cold drawing production line ,heat treatment production line ,surface treatment production line,testing equipment,various digital-control machining equipment,gantry style linear electroplating production line.

4. hydraulic telescopic cylinder for dump truck quality guarantee system

Program before Delivery

1). Trial Operation Test

2). Start-up Pressure Test

3). Pressure-Tight Test

4). Leak Test

5). Full Stroke Test

6). Buffer Test

7). Testing the Effect of Limit

8). Load Efficiency Test

9). Reliability Test

Every piece of hydraulic cylinder are tested and will send out only after they are pasted the each test.

  Our company has abundant technical force and perfect testing means. By making wide technical and business cooperation with many related enterprises, universities, colleges and institutes both at home and abroad, and employing senior engineers and software engineers, we have greatly strengthened and improved our designing, processing, and testing abilities.
 

5. After-service
    1).Pre-sale service: Keep communicating with the truck manufacturers , including selection of product model , design of hydraulic system,   test of performance and analysis of the accident. Once the problems occur, we will solve them immediately together with truck manufacturers .
    2).The sale service: Provide training and technical support for users.
    3).After-sale service: Solve the problem firstly, then analyse responsibility ; Replace the system components immediately if any need. 
    4). 24 hours telephone service hotline.

6.Exhibition and partner

7. FAQ

Q1. What are the same aspects of your cylinder with CHINAMFG cylinder?
A: Same inside structure.
Same outside dimension and same mounting sizes. It can be interchangeable with Hyva’s
 
Q2. Compared with CHINAMFG cylinder, what are your cylinder advantages?
A: 1. Rod are chrome plated.
2. Tubes are quenched and tempered.
3. Tube inner hole goes through deephole boring machine processing. Surface roughness is 0.4Ra 
and circular degree is 0.571.
4. Good quality yet lower price.
 
Q3: Are you a manufacture or a trade company?
A: Manufacture, we are the leader manufacturer of hydraulic industry in China with over 20 years’ experience and technology accumulation. With strong technical team we could solve any annoyance of you.
 
Q4: Do you have quality control system?
A: Yes, The quality management system introduced is: ISO/TS 16949:2009-certified by NQA and IATF cert.
 
Q5: How can i get a booklet and buy a cylinder from you?
A: Very easy! Just leave me a message or email or call me directly, let me know you are interesting in our products. I will talk with you for the details soon!
 
Q6: Can you tell me the price for the cylinder?
A: 1. Please advice the drawing with technical requirement.
2. Please advice the model No. after you check our booklet.
3. Please advice the tipping capacity, number of stages, closed length, mounting type and size.
4. Please also help advice the quantities, this is very important.
 
Q7: Do your products come with a warranty?
A: Yes, we have 14month from production time. In this time, if the quality problem we will free repair for you.
 
Q8: Hydraulic cylinder internal leakage?
A: 3 main reasons causing internal leakage: Overload, polishing bad controlled, cheap seal kits. As is known to all, vehicles in China are often overloaded, our products all designed to bear the overload power. Advanced equipment could assure the polish processing. And we use the imported/TOP brand seals to meet customers’ requirement.
 
Q9: What about the quality feedback of your products?
A: WE HAVE NEVER RECEIVED EVEN ONCE QUALITY COMPLAINT FOR MANY YEARS OF INTERNATIONAL BUSINESS.
 
Q10: Can you help me to install or recommend what kind of hydraulic cylinder or power pack should I use for specific machine?
A: Yes, we have 25 experienced engineers who are always ready to help you. If you do not know what kind of hydraulic cylinders should be used in your machine, please just contact us, our engineers will design the exact products match your need.
 
Q11: What is the delivery time?
A: 20 days for bulk production, which is depend on quality, production process and so on.
 
Q12: What is your main payment term?
A: T/T, L/C, D/A, D/P either is available.

Q13: What is your contact information?
A: Mob: –
 

Material: Steel
Usage: Lifting,Paushing and Falling
Structure: Piston Cylinder
Power: Hydraulic
Standard: Standard
Pressure Direction: Single-acting Cylinder
Customization:
Available

|

hydraulic cylinder

Can hydraulic cylinders be integrated with modern telematics and remote monitoring?

Yes, hydraulic cylinders can indeed be integrated with modern telematics and remote monitoring systems. The integration of hydraulic cylinders with telematics and remote monitoring technology offers numerous benefits, including enhanced operational efficiency, improved maintenance practices, and increased overall productivity. Here’s a detailed explanation of how hydraulic cylinders can be integrated with modern telematics and remote monitoring:

1. Sensor Integration:

– Hydraulic cylinders can be equipped with various sensors to gather real-time data about their performance and operating conditions. Sensors such as pressure transducers, temperature sensors, position sensors, and load sensors can be integrated directly into the cylinder or its associated components. These sensors provide valuable information about parameters such as pressure, temperature, position, and load, enabling remote monitoring and analysis of the cylinder’s behavior.

2. Data Transmission:

– The data collected from the sensors in hydraulic cylinders can be transmitted wirelessly or through wired connections to a central monitoring system. Wireless communication technologies such as Bluetooth, Wi-Fi, or cellular networks can be employed to transmit data in real-time. Alternatively, wired connections such as Ethernet or CAN bus can be utilized for data transmission. The choice of communication method depends on the specific requirements of the application and the available infrastructure.

3. Remote Monitoring Systems:

– Remote monitoring systems receive and process the data transmitted from hydraulic cylinders. These systems can be cloud-based or hosted on local servers, depending on the implementation. Remote monitoring systems collect and analyze the data to provide insights into the cylinder’s performance, health, and usage patterns. Operators and maintenance personnel can access the monitoring system through web-based interfaces or dedicated software applications to view real-time data, receive alerts, and generate reports.

4. Condition Monitoring and Predictive Maintenance:

– Integration with telematics and remote monitoring enables condition monitoring and predictive maintenance of hydraulic cylinders. By analyzing the collected data, patterns and trends can be identified, allowing for the detection of potential issues or anomalies before they escalate into major problems. Predictive maintenance algorithms can be applied to the data to generate maintenance schedules, recommend component replacements, and optimize maintenance activities. This proactive approach helps prevent unexpected downtime, reduces maintenance costs, and maximizes the lifespan of hydraulic cylinders.

5. Performance Optimization:

– The data collected from hydraulic cylinders can also be utilized to optimize their performance. By analyzing parameters such as pressure, temperature, and load, operators can identify opportunities for improving operational efficiency. Insights gained from the remote monitoring system can guide adjustments in system settings, load management, or operational practices to optimize the performance of hydraulic cylinders and the overall hydraulic system. This optimization can result in energy savings, improved productivity, and reduced wear and tear.

6. Integration with Equipment Management Systems:

– Telematics and remote monitoring systems can be integrated with broader equipment management systems. This integration allows hydraulic cylinder data to be correlated with data from other components or related machinery, providing a comprehensive view of the overall system’s performance. This holistic approach enables operators to identify potential interdependencies, optimize system-wide performance, and make informed decisions regarding maintenance, repairs, or upgrades.

7. Enhanced Safety and Fault Diagnosis:

– Telematics and remote monitoring can contribute to enhanced safety and fault diagnosis in hydraulic systems. Real-time data from hydraulic cylinders can be used to detect abnormal conditions, such as excessive pressure or temperature, which may indicate potential safety risks. Fault diagnosis algorithms can analyze the data to identify specific issues or malfunctions, enabling prompt intervention and reducing the risk of catastrophic failures or accidents.

In summary, hydraulic cylinders can be effectively integrated with modern telematics and remote monitoring systems. This integration enables the collection of real-time data, remote monitoring of performance, condition monitoring, predictive maintenance, performance optimization, integration with equipment management systems, and enhanced safety. By harnessing the power of telematics and remote monitoring, hydraulic cylinder users can achieve improved efficiency, reduced downtime, optimized maintenance practices, and enhanced overall productivity in various applications and industries.

hydraulic cylinder

Ensuring Consistent Force Output for Repetitive Tasks with Hydraulic Cylinders

Hydraulic cylinders are designed to ensure consistent force output for repetitive tasks. This consistency is essential for maintaining precise control, achieving uniform results, and optimizing the performance of hydraulic systems. Let’s explore how hydraulic cylinders achieve consistent force output for repetitive tasks:

  1. Design and Manufacturing Standards: Hydraulic cylinders are manufactured to meet strict design and manufacturing standards. These standards ensure that the cylinders are built with precision and accuracy, enabling them to deliver consistent force output. The components, such as the piston, cylinder barrel, seals, and valves, are engineered to work together harmoniously, minimizing variations in force generation.
  2. Pressure Regulation: Hydraulic systems incorporate pressure regulation mechanisms to maintain a constant pressure level. Pressure relief valves, pressure regulators, and pressure-compensated pumps help maintain a consistent hydraulic pressure throughout the system. By regulating the pressure, hydraulic cylinders receive a consistent supply of pressurized fluid, resulting in consistent force output for repetitive tasks.
  3. Flow Control: Flow control valves are utilized in hydraulic systems to manage the flow rate of hydraulic fluid. These valves regulate the speed at which the fluid enters and exits the hydraulic cylinder, influencing the force output. By controlling the flow rate, hydraulic cylinders can achieve consistent force output for repetitive tasks. This is particularly important when it comes to tasks that require precise and uniform force application.
  4. Effective Seal Performance: Sealing systems play a crucial role in hydraulic cylinders by preventing fluid leakage and maintaining pressure integrity. High-quality seals and proper installation ensure effective sealing throughout the cylinder’s operation. By minimizing internal leakage, hydraulic cylinders can maintain consistent force output, even during repetitive tasks.
  5. Maintenance and Inspection: Regular maintenance and inspection of hydraulic cylinders are essential for ensuring consistent force output. By following maintenance schedules, replacing worn-out components, and monitoring cylinder performance, any potential issues that could affect force consistency can be identified and addressed promptly. This proactive approach helps maintain the reliability and performance of hydraulic cylinders over time.

In summary, hydraulic cylinders employ various mechanisms to ensure consistent force output for repetitive tasks. Adherence to design and manufacturing standards, pressure regulation, flow control, effective seal performance, and regular maintenance all contribute to achieving consistent force output. By maintaining precision, minimizing variations, and addressing potential issues, hydraulic cylinders provide reliable and consistent force generation, facilitating the successful completion of repetitive tasks in various applications.

hydraulic cylinder

What maintenance practices are essential for extending the lifespan of hydraulic cylinders?

Maintaining hydraulic cylinders is crucial for extending their lifespan and ensuring optimal performance. Regular maintenance helps prevent premature wear, damage, and failure, ultimately reducing downtime and saving costs. Here are some essential maintenance practices to consider for extending the lifespan of hydraulic cylinders:

1. Regular Inspections:

– Conduct routine visual inspections of hydraulic cylinders to identify any signs of damage, leaks, or wear. Inspect the cylinder body, piston rod, seals, and mounting points. Look for fluid leaks, rust, dents, or any abnormal wear patterns. Early detection of issues allows for timely repairs or replacements, preventing further damage and extending the lifespan of the cylinder.

2. Cleanliness:

– Maintain a clean environment around hydraulic cylinders to prevent contaminants from entering the system. Dust, dirt, and debris can damage seals and other internal components, leading to accelerated wear and reduced performance. Regularly clean the cylinder and its surroundings to minimize the risk of contamination.

3. Proper Lubrication:

– Adequate lubrication is critical for the smooth operation and longevity of hydraulic cylinders. Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant. Apply lubrication to the cylinder’s moving parts, such as the piston rod, to reduce friction and minimize wear.

4. Seal Maintenance:

– Seals play a vital role in preventing hydraulic fluid leaks and maintaining the cylinder’s performance. Inspect and replace worn or damaged seals promptly. Ensure that seals are properly installed and lubricated. Regularly clean the seal grooves to remove any debris that could compromise seal effectiveness.

5. Pressure Checks:

– Periodically check the hydraulic system’s pressure to ensure it is within the recommended operating range. Excessive pressure can strain the cylinder and its components, leading to premature wear. Monitor pressure levels and make adjustments as necessary to prevent overloading the cylinder.

6. Control Valve Maintenance:

– Maintain and inspect control valves that regulate the flow and direction of hydraulic fluid. Ensure that the valves are functioning correctly and not causing excessive stress or pressure spikes in the cylinder. Clean or replace control valves if they are damaged or malfunctioning.

7. Cylinder Alignment:

– Proper alignment of hydraulic cylinders is essential for their longevity. Misalignment can cause excessive side loads, leading to uneven wear and potential damage. Ensure that the cylinder is correctly aligned with other components and that the mounting points are secure.

8. Preventing Overloading:

– Avoid subjecting hydraulic cylinders to loads exceeding their rated capacity. Overloading can cause internal damage, seal failure, and reduced lifespan. Ensure that the load requirements are within the cylinder’s capabilities and consider using safety devices like overload protection systems when necessary.

9. Training and Operator Awareness:

– Provide proper training to equipment operators on the correct use and handling of hydraulic cylinders. Operators should be aware of the cylinder’s limitations, safe operating procedures, and the importance of regular maintenance. Promote a culture of proactive maintenance and encourage operators to report any potential issues promptly.

10. Documentation and Record-Keeping:

– Maintain detailed documentation of all maintenance activities, including inspections, repairs, and replacements. Keep records of lubrication schedules, pressure checks, and any maintenance performed on the hydraulic cylinders. This documentation helps track the cylinder’s history, identify recurring issues, and plan future maintenance effectively.

By following these maintenance practices, hydraulic cylinder lifespan can be extended, ensuring reliable performance and reducing the risk of unexpected failures. Regular inspections, cleanliness, proper lubrication, seal maintenance, pressure checks, control valve maintenance, cylinder alignment, preventing overloading, operator training, and documentation contribute to the overall longevity and optimal functioning of hydraulic cylinders.

China Good quality North America CZPT Type Hydraulic Telescopic Cylinder for Tippping   vacuum pump design		China Good quality North America CZPT Type Hydraulic Telescopic Cylinder for Tippping   vacuum pump design
editor by CX 2023-11-16

Steering Forklift Cylinder

As one of the steering forklift cylinder manufacturers, suppliers, and exporters of mechanical products, We offer hydraulic cylinders and many others.

Please get in touch with us for details.

Manufacturer supplier exporter of steering forklift cylinders.

Recent Posts